K-P (Potassium-Phosphorus) System

James M. Sangster

Equilibrium Diagram

There are no liquidus or solubility data available for this system [2001Bor]. A large number of K-P compounds has been prepared and identified. Phosphorus forms many polyatomic groups (rings and cages), and Baudler [1982Bau, 1987Bau] has pointed out the analogies between phosphorus and carbon chemistry.

The preparation and structure of phosphorus compounds with alkali metals were reviewed [1958Waz, 1973Sch, 1977Sch, 1981Sch, 1983Sch1, 1983Sch2]; a later review [1988Sch] is both more detailed and more extensive.

In early work, the reported stoichiometry of some compounds was confused. This was because elemental compositions were not easily distinguished by analytical techniques of the time.

It is appropriate here to distinguish between compounds isolated and characterized as solids and those prepared only in solution (or those studied only by theoretical calculations). Unless otherwise noted, red phosphorus was used in preparing K-P compounds. Most K-P compounds decompose before melting.

Compounds Isolated as Solids

 K_3P (25 at.% P) was prepared by reaction of the elements in liquid ammonia [1895Hug] or in liquid hydrocarbon [1862Cah]. [1913Vou] prepared this compound by the reduction of PCl₃ or PCl₅ with K. It is better prepared by reaction of K with white or red P in stoichiometric amounts without solvent [1961Gnu]. It was characterized by powder XRD [1961Gnu].

 K_4P_3 (42.9 at.% P) was prepared from the elements, K:P = 1.5-2.0 [1989Sch]. It was characterized by singlecrystal XRD [1989Sch].

KP (50 at.% P) is prepared by the reaction of the elements [1979Sch]. It was characterized by single-crystal XRD [1978Hon, 1979Sch].

 K_4P_6 (60.0 at.% P) is prepared by reaction of the elements in stoichiometric ratio [1984Abi, 2005Kra]. This compound exists in two forms; the room temperature compound αK₄P₆ transforms by a first-order process at ~577 °C [1984Abi] to the high-temperature form βK_4P_6 . Both forms were characterized by single-crystal XRD [1984Abi]. βK_4P_6 may be quenched from high temperature and exists metastably at ambient temperature; it can then revert to αK₄P₆ by heating to 475 °C [1984Abi].

 K_3P_7 (70.0 at.% P) in early work was known as K_2P_5 (71.4 at.% P). The misidentification was pointed out later [1983Sch1]. K_3P_7 was prepared [1940Leg] from decomposition of KH₂P (a product of the reaction of PH₃ + K in liquid ammonia). Ether-solvated K_3P_7 resulted from reaction of K_4P_6 with ether in liquid ammonia [2005Kra].

The compound described as " $K_{0.43}P$ " [1979Sch] might have been K_3P_7 . The pure phosphide was prepared by direct reaction of the elements without solvent [1912Hac]. It is best prepared from stoichiometric amounts of the elements [1985Ten, 1986San, 1995Hon]. It undergoes a first-order crystalline to plastic-crystalline transition $\alpha K_3P_7 \rightarrow \beta K_3P_7$ at ~ 245 °C [1983Hon, 1983Sch1, 1983Sch2], ~260 °C [1985Ten] or ~265 °C [1986San]. The melting point was given as 982 °C [1985Ten]. Only βK_3P_7 has been characterized by XRD [1983Hon, 1983Sch1, 1983Sch2].

 K_3P_{11} (78.6 at.% P) is prepared by reaction of the elements [1991Sch]. The room temperature crystalline form (αK_3P_{11}) transforms to a plastic-crystalline form (βK_3P_{11}) in a first-order process at 450 °C [1991Sch]. Both forms were characterized by XRD [1983Sch1, 1983Sch2, 1991Sch]. Raman and infrared spectra of αK_3P_{11} in ethylenediamine solution were reported [1991Sch].

 $KP_{10.3}$ (91.1 at.% P). This compound, prepared by direct reaction of the elements, was described by [1988Sch] in preliminary work. The structure, from XRD data, could not be completely elucidated.

KP₁₅ (93.8 at.% P). The crystalline compound is prepared from the elements in a solid or liquid state reaction or by vapor transport [1967Sch, 1985Mar, 1985Ole1]. Crystalline or amorphous thin films were prepared from this product by vapor transport or vapor deposition [1984Ole, 1985Ole2, 1984Sch, 1985Sch]. The compound was characterized by single-crystal [1967Sch, 1985Ole1] or powder [1985Mar] XRD. Results of Raman, photoluminescence, photoconductivity, and transmission spectroscopy were reported [1984Ole, 1984Sch, 1985Mar, 1985Ole1, 1985Ole2, 1985Ole1].

Other Compounds

 K_6P_4 (40.0 at.% P) was prepared by reaction of the elements in liquid ammonia [1951Eve]. This author gave it the empirical formula K_3P_2 and stated that it was "probably dimeric." [1979Sch] identified a by-product of the preparation of KP as " $K_{1.5}P$ ".

 K_5P_4 (44.4 at.% P) was identified as " $K_{1.25}P$," byproduct of the preparation of KP [1979Sch].

 KP_x (x < 1, >50 at.% P) was mentioned by [1977Sch], without further identification.

 K_2P_4 (66.7 at.% P) was prepared as an ether-ammoniate in liquid ammonia solution [2006Kra]. Density functional theory was used to deduce the geometry of K_2P_4 itself [2004Jin].

 KP_5 (83.3 at.% P) was prepared by reaction of the elements in liquid ammonia solution [1895Hug]. It has not been isolated as a solid product.

 K_3P_{19} (86.4 at.% P) was prepared in glyme or tetrahydrofuran solution by the reaction of K with white P [1986Bau]. The solvated species was identified through its ³¹P-NMR spectrum [1986Bau].

 KP_7 (87.5 at.% P) was identified initially as " KP_x ," the product of the reaction between K and white P [1955Kre]. The corresponding Na compound could be identified by its structure and lattice parameters as most probably NaP₇. The designation " KP_7 " is therefore tentative.

Crystal Structures and Lattice Parameters

Crystal structures and lattice parameters of potassium phosphides are summarized in Table 1 and 2, respectively. These tables include only those compounds isolated and characterized in the pure solid state. The text below includes a description also of compounds incompletely described ("Other Compounds"). Some are descriptions of the

Phase	Composition at. % P	Pearson symbol	Space group	Strukturbericht designation	Prototype	Temperature, °C	Reference
К	0	cI2	Im3m	A2	W	25	[King1]
K ₃ P	25.0	hP8	$P6_3/mmc$	DO_{18}	Na ₃ As	25	[1961Gnu]
K_4P_3	42.9	oC28	Cmcm		W ₃ CoB ₃	25	[1989Sch]
KP	50.0	oP16	$P2_{1}2_{1}2_{1}$		NaP	20	[1978Hon]
$\alpha K_4 P_6$	60.0	oF40	Fmmm		Rb ₄ P ₆	20	[1974Sch]
$\beta K_4 P_6$	60.0	oF80	Fddd		$\beta K_4 P_6$	> 575	[1984Abi]
$\beta K_3 P_7$	70.0	cF40	$Fm\overline{3}m$		βRb_3P_7	>265	[1983Hon]
$\alpha K_3 P_{11}$	78.6	oP56	Pnab		αNa_3P_{11}	20	[1983Sch1, 1983Sch2]
$\beta K_3 P_{11}$	78.6	cP28	$Fm\overline{3}m$		βRb_3P_{11}	>450	[1988Sch]
KP ₁₅	93.8	<i>aP</i> 64(a)	$P\overline{1}$		KP15	20	[1967Sch]
P (black)	100	<i>oC</i> 8(b)	Cmca			25	[Pearson2]
P (white)	100	<i>c</i> **				25	[Pearson2]
P (red)	100	<i>c</i> *66				25	[Pearson2]

(a) In [1988Sch], this is given as aP32

(b) P exists in rhombohedral and cubic forms at high pressures and room temperature

Table 2 K-P lattice parameter data

	Composition, at.% P	Lattice parameters, nm							
Phase		а	b	с	α	β	γ	Temperature, °C	Reference
K	0	0.5321						25	[King2]
K ₃ P	25.0	0.5691		1.005				20	[1961Gnu]
K_4P_3	42.9	0.5049	1.1197	1.4788				20	[1989Sch]
KP	50.0	0.6500	0.6016	1.1288				20	[1978Hon]
$\alpha K_4 P_6$	60.0	0.9347	1.4253	0.8624				20	[1984Abi]
		0.9361	1.4268	0.8644				20	[1974Sch]
$\beta K_4 P_6$	60.0	1.8650	1.4772	0.8305				20	[1984Abi]
βK ₃ P ₇	70.0	1.0603						267	[1983Hon]
$\alpha K_3 P_{11}$	78.6	1.0315	1.3940	1.0450				20	[1983Sch1, 1983Sch2]
$\beta K_3 P_{11}$	78.6	0.9282						25(a)	[1991Sch]
KP ₁₅	93.8	2.374	0.969	0.721	116.7°	97.5°	90.0°	20	[1967Sch]
		1.1945	0.9705	0.7157	116.34°	101.46°	81.93°	20	[1985Ole1, 1985Ole2]
P (black)	100	0.33136	1.0478	0.43763				25	[Pearson2]
P (white)	100	0.718						25	[Pearson2]
P (red)	100	1.131						25	[Pearson2]
(a) Metasta	bly quenched from high te	emperature							

phosphorus anions, and are given here to document the ability of P to form cage structures.

Compounds Isolated in the Pure Solid State

 K_3P has hexagonal structure with isolated P^{3-} anions [1961Gnu] from powder XRD data . It is isostructural with Na₃P. The fractional ionic character of K_3P , calculated by two different methods, was 0.74 or 0.96 [1990Sha].

In K_4P_3 , the P-P-P bond angle in the P_3^{4-} anion is 118.1°, and each P atom lies in the center of a trigonal prism built up of six K⁺ ions with tricapped rectangular faces [1989Sch].

KP may be regarded as containing one-dimensional infinite helices of P⁻ anions [1978Hon, 1979Sch].

In K₄P₆, both forms are face-centered orthorhombic; in both there are isolated planar parallel P_6^{4-} rings. Each P atom is surrounded trigonal-prismatically by six K^+ ions [1974Sch, 1984Abi, 1981Sch, 1987Sch]. Alternatively, the structure may be envisioned as a defect-structure derivative of the Al₄B₈ (AlB₂) type: K₄P₆ \Box_2 . In this case, two P sites remain vacant in an ordered way and leave isolated planar P_6 rings [1988Sch]. This scheme is explained more fully in [1983Nes].

 K_3P_7 . The structure of the room temperature (α -form) solid has not been fully elucidated; the high-temperature (β -form) is fcc. In both forms, there are P_7^{3-} cage groups (formally analogous to nortricyclene in carbon chemistry) [1983Hon, 1983Sch1, 1983Sch2]. The β -form is of the Li₃Bi type, where the P_7^{3-} anions occupy the Bi³⁻ sites.

 K_3P_{11} at room temperature is orthorhombic (α -form), whereas the high-temperature form is cubic [1983Sch1, 1983Sch2]. Both forms contain P_{11}^{3-} cages, highly internally connected [1991Sch]. The corresponding carbon cage compound was given the trivial name "ufosan" [1973Wic, 1988Sch].

 KP_{15} contains infinite P_{15}^{-} tubes, resulting from a polymerization of alternating P_7^{-} and P_8^{0} units [1967Sch, 1981Sch]. The K atoms are situated between the tubes, and each K atom has six nearest neighbors.

Other Compounds

KP_{10.3} was given [1988Sch] the Pearson symbol tP1488 and the anionic structure was described as "complex tubular superstructure."

 K_3P_{19} contains P_{19}^{3-} anions made up of a central P_5^{-} pentagon, to which are attached two P_7^- groups formally analogous to deltacyclane [1986Bau].

 K_2P_4 has been investigated only as an ether ammoniate [2006Kra]. The compound K_2P_4 itself has a dipyramidyl structure, with a square P_4^{2-} anion. This was corroborated by theoretical calculations [2005Kra]. MINDO/3 calculations suggest that the P_4^{2-} anion by itself has D_{4h} symmetry, i.e., tetrahedral [1981Cut].

Thermodynamics

Experimental data are summarized in Table 3. Standard thermodynamic quantities of K₃P were estimated [1980Suu] as: $\Delta_{\rm f} H^{\circ}_{298} = 1.77 \text{ kJ mol}^{-1}$ and $S^{\circ}_{298} = 49.8 \text{ J mol}^{-1} \text{ K}^{-1}$. Vapor pressure data for K₃P₇ were obtained by Knudsen effusion/mass spectrometry [1986San] in the range 744-889 K. From these data were deduced the standard thermodynamic properties (second law) $\Delta_{\rm f} H^{\circ}_{298}$, $\Delta_{\rm f} G^{\circ}_{298}$, and S°_{298} . Heat capacity data of this compound were measured in the range 120-770 K by differential scanning calorimetry [1985Ten]. From these data were deduced the solid transition temperature and the enthalpy of transition [1985Ten]. The melting temperature and enthalpy of fusion were determined by differential thermal analysis [1985Ten].

Heat capacity data for KP15 were obtained in the range 2-470 K by adiabatic and differential scanning calorimetry [1983San]. A value for S_{298}° for KP₁₅ was deduced from these data. Vapor pressure of this compound was measured by Knudsen effusion/mass spectrometry [1987San] in the range 502-600 K. From these data were deduced the standard formation properties $\Delta_{\rm f} H^{\circ}_{298}$ and $\Delta_{\rm f} G^{\circ}_{298}$.

Compound	$\Delta_{\rm f} H^0_{298}$, kJ mol ⁻¹	$\Delta_f G^0_{298}$, kJ mol ⁻¹	S^{0}_{298} , J mol ⁻¹ K ⁻¹	$\Delta_{\rm trs} H$, kJ mol ⁻¹	$\Delta_{\rm fus}H$, kJ mol ⁻¹
$\alpha K_3 P_7$	-124(a)	-302(a)	596(a)	10.1(b)	
$\beta K_3 P_7$	-66(a)	-291(a)	756(a)		10(b)
KP15	-126(c)	-245(c)	411.4(e)		
	-118(d)	-241(d)	398(g)		
	- 651(f)				
(a) [1986San]					
(b) [1985Ten] (h	eating mode)				
(c) [1987San], se	econd law				
(d) [1987San], th	nird law				
(e) [1983San]					

 Table 3 Experimental thermodynamic properties of K phosphides

(f) [1985Mar]. Reference state of elements: ideal gas at 298 K and 1 atm

(g) [1988Sch]

[1985Mar] measured the pressure of P_4 (gas) over KP_{15} with a Bourdon gauge. From these data were deduced the enthalpy of formation of KP_{15} (cr) from the gaseous elements at 298.15 K.

References

- **1862Cah:** A. Cahours, Untersuchungen űber Metallhaltigen Organischen Radicale (Investigations of Organometallic Compounds), *Annal. Chem. Pharm.*, 1982, **122**, p 329-347, in German (Equi Diagram; Experimental)
- 1895Hug: C. Hugot, Sur Quelques Phosphures Alcalins (Some Alkali Phosphides), *Compt. Rend. Hebd. Séances Acad. Sci.*, 1895, 121, p 206-208, in French (Equi Diagram; Experimental)
- **1912Hac:** L. Hackspill and R. Bossuet, Sur de Nouveaux Phosphures Alcalins P_5M_2 (New Alkali Phosphides P_5M_2), *Compt. Rend. Hebd. Séances Acad. Sci.*, 1912, **154**, p 209-211, in French (Equi Diagram; Experimental)
- 1913Vou: A.C. Vournasos, Reduktion einiger flüchtiger Halogenverbindungen durch Kaliumpulver (Reduction of Some Liquid Halogen Compounds by Potassium Powder), Z. Anorg. Chem., 1913, 81, p 364-368, in German (Equi Diagram; Experimental)
- **1940Leg:** C. Legoux, Sur la décomposition des phosphidures alcalins sous l'action de la chaleur (The Decompsition of Alkali Phosphides upon Heating), *Bull. Soc. Chim. Fr., Ser. 5*, 1940, **7**, p 545-549, in French (Equi Diagram; Experimental)
- **1951Eve:** E.C. Evers, The Alkali Phosphides. I. Reaction of Alkali Metals and White Phosphorus in Liquid Ammonia, *J. Am. Chem. Soc.*, 1951, **73**(5), p 2038-2040 (Equi Diagram; Experimental)
- 1955Kre: H. Krebs, K.H. Müller, I. Pakulla and G. Zűrn, Über den Hittorfschen Phosphor und kristallisierte Polyphosphide (Hittorf Phosphorus and Crystalline Polyphosphides), *Angew. Chem.*, 1955, 67(17-18), p 524-525, in German (Crys Structure; Experimental)
- **1958Waz:** J.R. Van Wazer, Alkali Metal Phosphides, *Phosphorus and Its Compounds*, Vol 1 (Chemistry), Interscience, New York, 1958, p 133-144 (Equi Diagram, Crys Structure; Review)
- **1961Gnu:** G. Gnutzmann, F.W. Dorn and W. Klemm, Über einige A₃B- und AB₂-Verbindungen der schweren Alkalimetalle mit Elementen der V. Gruppe (Some A₃B- and AB₂-Compounds of the Heavy Alkali Metals with Elements of Group V), *Z. Anorg. Allg. Chem.*, 1961, **309**, p 210-225, in German
- **1967Sch:** H.G. von Schnering and H. Schmidt, KP₁₅, ein neues Kaliumpolyphosphid (KP₁₅, a New Potassium Polyphosphide), *Angew. Chem.*, 1967, **79**(7), p 323, in German; TR: *Angew. Chem. Int. Ed. Engl.*, 1967, **6**(4), p 356 (Equi Diagram, Crys Structure; Experimental)
- 1973Sch: H.G. von Schnering, Strukturelemente in Polyphosphiden (Structural Elements in Polyphosphides), *Nachr. Chem. Tech.*, 1973, 21(19), p 440-442, in German (Crys Structure; Review)
- **1973Wic:** W. Wichelhaus and H.G. von Schnering, Na₃P₁₁, ein Phosphid mit isolierten P₁₁^{3–}-Gruppen (Na₃P₁₁, a Phosphide with Isolated P₁₁^{3–} Groups), *Naturwissenschaften*, 1973, **60**(2), p 104, in German (Crys Structure; Experimental)
- **1974Sch:** W. Schmettow, A. Lipka, and H.G. von Schnering, Rb₄P₆, ein Phosphid mit planaren Phosphor-Sechsringen (Rb₄P₆, a Phosphide with Planar Six-Membered Phosphorus Rings), *Angew. Chem.*, 1974, **86**(10), p 379-380, in German; TR: *Angew. Chem. Int. Ed. Engl.*, 1974, **13**(5), p 345 (Crys Structure; Experimental)

- 1977Sch: H.G. von Schnering, Catenation of Phosphorus Atoms, Chap. 14, in *Homoatomic Rings, Chains and Macromolecules of Main Group Elements*, A.L. Rheingold, Ed., Elsevier, Amsterdam, 1977 (Equi Diagram, Crys Structure; Review)
- **1978Hon:** W. Hönle and H.G. von Schnering, The Structure of I/V Compounds and Their Relationships, *Acta Crystallogr. A*, 1978, **34**, p S152 (Crys Structure; Experimental)
- 1979Sch: H.G. von Schnering and W. Hönle, Darstellung, Struktur und Eigenschaften der Alkalimetallmonophosphide NaP und KP (Preparation, Structure and Properties of the Alkali Metal Phosphides NaP and KP), Z. Anorg. Allg. Chem., 1979, 456, p 194-216, in German (Equi Diagram, Crys Structure; Experimental)
- 1980Suu: N.T. Suu and D.U. Van, Thermodynamic Properties and Structure of A^IB^V Compounds, *Tap Chi Hoa Hoc.*, 1980, 18(1), p 16-18, in Vietnamese (Thermo; Theory)
- 1981Cut: A.F. Cuthbertson and C. Glidewell, MINDO/3 Study of Some Tetra-atomic Clusters, *Inorg. Chim. Acta*, 1981, 49(1), p 91-97 (Crys Structure; Theory)
- 1981Sch: H.G. von Schnering, Homoatomic Bonding of Main Group Elements, Angew. Chem., 1981, 93(1), p 44-63, in German; TR: Angew. Chem. Int. Ed. Eng., 1981, 20(1), p 33-51 (Crys Structure; Review)
- 1982Bau: M. Baudler, Ketten- und ringförmige Phosphorverbindungen—Analogien Zwischen Phosphor- und Kohlenstoffchemie (Chain and Ring Phosphorus Compounds—Analogies Between Phosphorus and Carbon Chemistry), *Angew. Chem.*, 1982, 94(7), p 520-539, in German; TR: *Angew. Chem. Int. Ed. Eng..*, 1982, 21, p 492-512 (Crys Structure; Review)
- **1983Hon:** W. Hönle, V. Manriquez, T. Meyer and H.G. von Schnering, Kristalline und plastisch-kristalline Phasen der Trialkalimetallheptaphosphide (Crystalline and Plastic-Crystalline Phases of the Trialkali Metal Heptaphosphides), *Z. Kristallogr.*, 1983, **162**(1-4), p 104-106, in German (Crys Structure; Experimental)
- 1983Nes: R. Nesper and H.G. von Schnering, Strukturen mit Polyanionen als Defektvarianten allgemeiner Strukturtypen (Structures Containing Polyanions—Defectvariants of Common Structure Types), *TMPM, Tschermaks Mineral. Petrograph. Mitteil.*, 1983, 32(2-3), p 195-208, in German (Crys Structure; Theory)
- **1983San:** R. Santandrea, E. Gmelin, C. Santandrea and H.G. von Schnering, Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 32. Heat Capacity Measurements of LiP₁₅ and KP₁₅, *Thermochim. Acta*, 1983, **67**, p 263-269 (Thermo; Experimental)
- **1983Sch1:** H.G. von Schnering, Rings, Clusters and Polymers of the Main Group Elements, *ACS Symp. Ser.*, 1983, (232), p 69-80 (Crys Structure; Review)
- **1983Sch2:** H.G. von Schnering, W. Hönle, V. Manriquez, T. Meyer, C. Mensing and W. Giering, Plastic Phases with Alkali Metal Pnictides, *Stud. Inorg. Chem.*, 1983a, **3**, p 765-768 (Equi Diagram, Crys Structure; Review)
- **1984Abi:** H.-P. Abicht, W. Hönle and H.G. von Schnering, Tetrakaliumhexaphosphid: Darstellung, Struktur und Eigenschaften von α -k₄P₆ und β -k₄P₆ (Tetrapotassium Hexaphosphide: Preparation, Structure and Properties of α -k₄P₆ and β -k₄P₆), *Z. Anorg. Allg. Chem.*, 1984, **519**, p 7-23, in German (Equi Diagram, Crys Structure; Experimental)
- **1984Ole:** D. Olego, R. Schachter, J. Baumann, M. Kuck, and S. Gersten, Optical and Raman Investigation of Amorphous Polyphosphides, *AIP Conf. Proc.*, 1984, **120**, p 441-448 (Crys Structure; Experimental)
- 1984Sch: R. Schachter, C.G. Michel, M.A. Kuck, J.A. Baumann, D.J. Olego, L.G. Polgar, P.M. Raccah, and W.E. Spicer,

Section II: Phase Diagram Evaluations

Semiconductor Properties of Polyphosphides, *Appl. Phys. Lett.*, 1984, **45**(3), p 277-279 (Equi Diagram, Crys Structure; Experimental)

- **1985Mar:** H.S. Marek, C.G. Michel, J.A. Baumann, and M.A. Kuck, Thermodynamic Properties of Potassium Polyphosphide KP₁₅, *J. Electrochem. Soc.*, 1985, **132**(11), p 2771-2774 (Equi Diagram, Thermo; Experimental)
- **1985Ole1:** D.J. Olego, Vibrational and Electronic Properties of MP₁₅ Polyphosphides: Crystalline RbP₁₅, KP₁₅ and NaP₁₅, *Phys. Rev. B*, 1985, **31**(4), p 2230-2239 (Crys Structure; Experimental)
- **1985Ole2:** D.J. Olego, J. Baumann, R. Schachter, C. Michel, M. Kuck, S. Gersten, and L.G. Polgar, Vibrational and Electronic Properties of MP₁₅ Polyphosphides: KP₁₅ Thin Films, *Phys. Rev. B*, 1985a, **31**(4), p 2240-2245 (Equi Diagram, Crys Structure; Experimental)
- **1985Sch:** R. Schachter, D.J. Olego, J.A. Baumann, C.G. Michel, M.A. Kuck, L.G. Polgar, P.M. Raccah, and W.E. Spicer, Novel Polyphosphide Semiconductors with Good Interfacial Properties to InP, *Proc. 17th Int. Conf. Semicond.*, 1985, p 225-228 (Equi Diagram, Crys Structure; Experimental)
- 1985Ten: K. Tentschev, E. Gmelin and W. Hönle, Phase Transitions Crystalline to Plastic-Crystalline and the Specific Heat of M₃P₇ Compounds (M = Li, Na, K, Rb, Cs), *Thermochim. Acta*, 1985b, 85, p 151-154 (Thermo; Experimental)
- **1986Bau:** M. Baudler, D. Dűster, and J. Germeshausen, M₃P₁₉, (M = Li, Na, K), die ersten Salze mit Nonadecaphosphid(3–) Ionen (M₃P₁₉ [M = Li, Na, K], the First Salts with Nonadecaphosphide(3–) Ions), Z. Anorg. Allg. Chem., 1986, **534**, p 19-26, in German (Equi Diagram, Crys Structure; Experimental)
- **1986San:** R.P. Santandrea, C. Mensing, and H.G. von Schnering, The Sublimation and Thermodynamic Properties of the Alkali Metal Phosphides Na₃P₇(s), k₃P₇(s), Rb₃P₇(s) and Cs₃P₇(s), *Thermochim. Acta*, 1986, **98**, p 301-311 (Thermo; Experimental)
- **1987Bau:** M. Baudler, Polyphosphorverbindungen—Neue Ergebnisse und Perspektiven (Polyphosphorus Compounds—New Results and Perspectives), *Angew. Chem.*, 1987, **99**(5), p 429-451, in German (Equi Diagram; Review)
- **1987San:** R.P. Santandrea, C. Mensing, and H.G. von Schnering, The Thermal Decomposition and Thermodynamic Properties of the Alkali Metal Phosphides LiP₁₅(s), NaP₁₅(s), KP₁₅(s), RbP₁₅(s) and CsP₁₅(s), *Thermochim. Acta*, 1987, **117**, p 261-270 (Thero; Experimental)
- **1987Sch:** H.G. von Schnering, T. Meyer, W. Hönle, W. Schmettow, U. Hinze, W. Bachofer and G. Kliche, Tetrarubidiumhexaphosphid und Tetracesiumhexaphosphid: Darstellung, Struktur und

Eigeneschaften von Rb_4P_6 und Cs_4P_6 (Tetrarubidium Hexaphosphide and Tetracesium Hexaphosphide: Preparation, Structure and Properties of Rb_4P_6 and Cs_4P_6), *Z. Anorg. Allg. Chem.*, 1987, **553**, p 261-279, in German (Equi Diagram, Crys Structure; Experimental)

- *1988Sch: H.G. von Schnering and W. Hönle, Bridging Chasms with Polyphosphides, *Chem. Rev.*, 1988, **88**(1), p 243-273 (Equi Diagram, Crys Structure, Thermo; Review)
- **1989Sch:** H.G. von Schnering, M. Hartweg, U. Hartweg, and W. Hönle, K₄P₃, eine Verbindung mit dem Radikalanion P₃^{4–} (K₄P₃, a Compound Containing the Radical Anion P₃^{4–}), *Angew. Chem.*, 1989, **101**(1), p 98-99, in German; TR: *Angew. Chem. Int. Ed. Engl.*, 1989, **28**(1), p 56-58 (Equi Diagram, Crys Structure; Experimental)
- 1990Sha: S.B. Sharma, P. Paliwal and M. Kumar, Electronic Dielectric Constant, Energy Gap and Fractional Ionic Character of Polyatomic Binary Compounds, *J. Phys. Chem. Solids*, 1990, 51(1), p 35-39 (Crys Structure; Theory)
- **1991Sch:** H.G. von Schnering, M. Somer, G. Kliche, W. Hönle, T. Meyer, J. Wolf, L. Ohse, and P.B. Kempa, Darstellung, Eigenschaften und Schwingungsspektra der Käfiganionen P₁₁^{3–} und As₁₁^{3–} (Preparation, Properties and Vibrational Spectra of the Cage Anions P₁₁^{3–} and As₁₁^{3–}), *Z. Anorg. Allg. Chem.*, 1991, **601**, p 13-30, in German (Equi Diagram, Crys Structure; Experimental)
- **1995Hon:** W. Hönle and H.G. von Schnering, Trisodium Heptaphosphide and Trisodium Undecaphosphide, *Inorg. Syntheses*, 1995, **30**, p 56-63 (Equi Diagram; Experimental)
- 2001Bor: H.U. Borgstedt and C. Guminski, IUPAC-NIST Solubility Data Series. 75. Nonmentals in Liquid Alkali Metals, *J. Phys. Chem. Ref. Data*, 2001, 30(4), p 835-1158 (Equi Diagram; Review)
- **2004Jin:** Q. Jin, B. Jin, and W.G. Xu, Aromaticity of the Square P_4^{2-} Dianion in the P_4M (M = Be, Mg, Ca) and P_4M_2 (M = Li, Na, K) Clusters, Chem. Phys. Lett., 2004, **396**(4-6), p 398-403 (Crys Structure; Theory)
- **2005Kra:** F. Kraus and N. Korber, The Chemical Bond in Polyphosphides: Crystal; Structures, the Electron Localization Function and a New View of Aromaticity in P_4^{2-} and P_5^- , *Chem.-Eur. J.*, 2005, **11**(20), 5945-5959 (Equi Diagram, Crys Structure; Experimental)
- **2006Kra:** F. Kraus, T. Hanauer, and N. Korber, Nature of the Chemical Bond in Polypnictides: The Lone Pair Aromatic Anions P and As, *Inorg. Chem.*, 2006, **45**(3), p 1117-1123 (Equi Diagram, Crys Structure; Experimental)

K-P evaluation contributed by J. Sangster, Sangster Research Laboratories, P.O. Box 49562, 5122 Cotes des Neiges, Montreal, Quebec, Canada, H3T 2A5. Literature search through 2008.